PPS Capsule Filters
Double Layered Polyethersulfone Membrane

Applications
- Diagnostics
- Vaccines
- LVPs and SVPs
- Biologicals
- WFI Water
- Ophthalmics

PPS Capsules are hydrophilic and manufactured with the highest quality asymmetric polyethersulfone membrane, double layered for extra security. Polyethersulfone (PES) membrane exhibits excellent flow rates with high throughput. PPS capsules are used for sterilizing filtration, the most critical applications in the pharmaceutical industry. PPS capsule elements are 100% integrity tested during production.

Specific applications for PPS capsule filters are final, sterilizing filtration of USP Water for Injection (WFI), diagnostic solutions, vaccines, ophthalmics, SVPs, LVPs and biological products.

Polyethersulfone is particularly suited for the filtration of products that contain elements that can adsorb to the media, such as preservatives and proteins. The lower binding characteristics of polyethersulfone (PES) make it a good choice for filtration of valuable protein solutions such as vaccines and biologicals as well as ophthalmic solutions.

Flow Rate / Filtration Area
The following table represents typical water flow at a one psi (69 mbar) pressure differential across a single 2 inch capsule with 1.0 ft² (930 cm²) of media with 1/2" FNPT ports. The test fluid is water at ambient temperature. Higher pressure drops are acceptable, but as flows increase the pressure drop of the housing becomes more apparent.

<table>
<thead>
<tr>
<th>Pore Size</th>
<th>0.03 μm</th>
<th>0.10 μm</th>
<th>0.22 μm</th>
<th>0.45 μm</th>
<th>0.65 μm</th>
<th>0.8 μm</th>
<th>1.0 μm</th>
<th>1.2 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>0.16</td>
<td>0.26</td>
<td>0.46</td>
<td>0.71</td>
<td>0.86</td>
<td>0.91</td>
<td>0.97</td>
<td>1.0</td>
</tr>
<tr>
<td>LPM</td>
<td>0.61</td>
<td>0.98</td>
<td>1.74</td>
<td>2.69</td>
<td>3.26</td>
<td>3.44</td>
<td>3.67</td>
<td>3.78</td>
</tr>
</tbody>
</table>

* For approximate flow rates for 5” through 30” capsules, refer to the appropriate cartridge data sheet

Sanitization/Sterilization
- Autoclave: 250° F (121° C), 30 min, multiple cycles
- Chemical Sanitization: Industry standard concentrations of hydrogen peroxide, paracetic acid, sodium hypochlorite and other selected chemicals.

Note: PPS capsules are not to be used in steam.

Pre-Sterilized: PPS capsules are offered in both non- and pre-sterilized forms.

Maximum Operating Parameters
- Liquid Operational Pressure: 80 psi (5.5 bar) at 20 °C (68 °F)
- Gases Operational Pressure: 60 psi (4.1 bar) at 20 °C (68 °F)
- Operating Temperature: 43 °C (110 °F) at 30 psi (2.1 bar) in water
- Forward Differential Pressure: 50 psid (3.4 bard) at 20 °C (68 °F)
- Reverse Differential Pressure: 40 psid (2.7 bard) at 20 °C (68 °F)
- Recommended Changeout Pressure: 35 psid (2.4 bard)

Construction Materials
- Housing: Polypropylene
- Filtration Media: Double Layered Polyethersulfone (PES) Membrane
- Media Support: Polypropylene
- End Caps: Polypropylene
- Center Core: Polypropylene
- Outer Support Cage: Polypropylene
- Sealing Method: Thermal Bonding

PPS Capsules are validated for use in multiple pharmaceutical applications.

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

Validated for use in multiple pharmaceutical applications

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

PPS Capsule Filters - Filtration Area

<table>
<thead>
<tr>
<th>Media</th>
<th>2" (0.93m²)</th>
<th>5" (2.78m²)</th>
<th>10" (6.50m²)</th>
<th>14.0 ft² (13.01m²)</th>
<th>21.0 ft² (19.51m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>1.0 ft²</td>
<td>3.0 ft²</td>
<td>7.0 ft²</td>
<td>14.0 ft²</td>
<td>21.0 ft²</td>
</tr>
</tbody>
</table>

Flow Rate / Filtration Area
The following table represents typical water flow at a one psi (69 mbar) pressure differential across a single 2 inch capsule with 1.0 ft² (930 cm²) of media with 1/2" FNPT ports. The test fluid is water at ambient temperature. Higher pressure drops are acceptable, but as flows increase the pressure drop of the housing becomes more apparent.

<table>
<thead>
<tr>
<th>Pore Size</th>
<th>0.03 μm</th>
<th>0.10 μm</th>
<th>0.22 μm</th>
<th>0.45 μm</th>
<th>0.65 μm</th>
<th>0.8 μm</th>
<th>1.0 μm</th>
<th>1.2 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPM</td>
<td>0.16</td>
<td>0.26</td>
<td>0.46</td>
<td>0.71</td>
<td>0.86</td>
<td>0.91</td>
<td>0.97</td>
<td>1.0</td>
</tr>
<tr>
<td>LPM</td>
<td>0.61</td>
<td>0.98</td>
<td>1.74</td>
<td>2.69</td>
<td>3.26</td>
<td>3.44</td>
<td>3.67</td>
<td>3.78</td>
</tr>
</tbody>
</table>

* For approximate flow rates for 5” through 30” capsules, refer to the appropriate cartridge data sheet

Sanitization/Sterilization
- Autoclave: 250° F (121° C), 30 min, multiple cycles
- Chemical Sanitization: Industry standard concentrations of hydrogen peroxide, paracetic acid, sodium hypochlorite and other selected chemicals.

Note: PPS capsules are not to be used in steam.

Pre-Sterilized: PPS capsules are offered in both non- and pre-sterilized forms.

Maximum Operating Parameters
- Liquid Operational Pressure: 80 psi (5.5 bar) at 20 °C (68 °F)
- Gases Operational Pressure: 60 psi (4.1 bar) at 20 °C (68 °F)
- Operating Temperature: 43 °C (110 °F) at 30 psi (2.1 bar) in water
- Forward Differential Pressure: 50 psid (3.4 bard) at 20 °C (68 °F)
- Reverse Differential Pressure: 40 psid (2.7 bard) at 20 °C (68 °F)
- Recommended Changeout Pressure: 35 psid (2.4 bard)

Construction Materials
- Housing: Polypropylene
- Filtration Media: Double Layered Polyethersulfone (PES) Membrane
- Media Support: Polypropylene
- End Caps: Polypropylene
- Center Core: Polypropylene
- Outer Support Cage: Polypropylene
- Sealing Method: Thermal Bonding

Valued for use in multiple pharmaceutical applications

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

Validated for use in multiple pharmaceutical applications

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

PPS Capsule Filters - Filtration Area

<table>
<thead>
<tr>
<th>Media</th>
<th>2" (0.93m²)</th>
<th>5" (2.78m²)</th>
<th>10" (6.50m²)</th>
<th>14.0 ft² (13.01m²)</th>
<th>21.0 ft² (19.51m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>1.0 ft²</td>
<td>3.0 ft²</td>
<td>7.0 ft²</td>
<td>14.0 ft²</td>
<td>21.0 ft²</td>
</tr>
</tbody>
</table>

Sanitization/Sterilization
- Autoclave: 250° F (121° C), 30 min, multiple cycles
- Chemical Sanitization: Industry standard concentrations of hydrogen peroxide, paracetic acid, sodium hypochlorite and other selected chemicals.

Note: PPS capsules are not to be used in steam.

Pre-Sterilized: PPS capsules are offered in both non- and pre-sterilized forms.

Maximum Operating Parameters
- Liquid Operational Pressure: 80 psi (5.5 bar) at 20 °C (68 °F)
- Gases Operational Pressure: 60 psi (4.1 bar) at 20 °C (68 °F)
- Operating Temperature: 43 °C (110 °F) at 30 psi (2.1 bar) in water
- Forward Differential Pressure: 50 psid (3.4 bard) at 20 °C (68 °F)
- Reverse Differential Pressure: 40 psid (2.7 bard) at 20 °C (68 °F)
- Recommended Changeout Pressure: 35 psid (2.4 bard)

Construction Materials
- Housing: Polypropylene
- Filtration Media: Double Layered Polyethersulfone (PES) Membrane
- Media Support: Polypropylene
- End Caps: Polypropylene
- Center Core: Polypropylene
- Outer Support Cage: Polypropylene
- Sealing Method: Thermal Bonding

Valued for use in multiple pharmaceutical applications

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

Validated for use in multiple pharmaceutical applications

Excellent flow rates with high throughput

Integrity testable

Designed for minimal leachables and extractables

Low adsorption of proteins and preservatives

PPS Capsule Filters - Filtration Area

<table>
<thead>
<tr>
<th>Media</th>
<th>2" (0.93m²)</th>
<th>5" (2.78m²)</th>
<th>10" (6.50m²)</th>
<th>14.0 ft² (13.01m²)</th>
<th>21.0 ft² (19.51m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PES</td>
<td>1.0 ft²</td>
<td>3.0 ft²</td>
<td>7.0 ft²</td>
<td>14.0 ft²</td>
<td>21.0 ft²</td>
</tr>
</tbody>
</table>
 Critical Process Filtration can provide validation assistance. Saccharomyces cerevisiae 0.65 μm challenged with; Serratia marcescens 0.45 μm challenged with; Brevundimonas diminuta 0.22 μm challenged with; Acholeplasma laidlawii filtration. The challenge level is 10^7 organisms per cm^2 of filter media: the determination of bacterial retention in filters used for liquid with the intent of both ASTM F 838-05 and HIMA protocols for PPS cartridges are validated using test procedures that comply with the requirements of the MEM Elution Cytotoxicity Test and the requirements for Biological Reactivity Tests in the current version of the United States Pharmacopeia (USP) for Class VI - 121 °C Plastics. In addition, the materials meet the requirements listed by the FDA as appropriate for use in articles intended for repeated food contact as specified in Title 21 CFR sections 174.5, 177.1500, 177.1520, 177.1630, 177.2440, and 177.2600 as appropriate. PPS capsule filters comply with Title 21 CFR sections 210.3 (b)(6) and 211.72, for non-fiber releasing filters. The levels of bacterial endotoxins in aqueous extracts from pharmaceutical grade capsule filters are below current USP limits as specified for water for injection.

** Test pressure exceeds operational limits of capsule filters. Use the diffusion test method.

Integrity Test Specifications - Diffusion

<table>
<thead>
<tr>
<th>Pore Size (µm)</th>
<th>Test Pressure (psi)</th>
<th>Max Diffusion Rate (cc/min - water wetted membrane)</th>
<th>2"</th>
<th>5"</th>
<th>10"</th>
<th>20"</th>
<th>30"</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>60</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0.10</td>
<td>48</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>35</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>20</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>15</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>12</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>8</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>7</td>
<td>2.1</td>
<td>6.3</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Integrity Test Specifications - Bubble Point

<table>
<thead>
<tr>
<th>Pore Size (µm)</th>
<th>Bubble Point (water wetted membrane)</th>
<th>**</th>
<th>**</th>
<th>50 psig (3.5 barg)</th>
<th>25 psig (1.7 barg)</th>
<th>19 psig (1.3 barg)</th>
<th>15 psig (1.1 barg)</th>
<th>10 psig (0.7 barg)</th>
<th>9 psig (0.6 barg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.10 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>0.22</td>
<td>0.22 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>0.45</td>
<td>0.45 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>0.65</td>
<td>0.65 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2 µm</td>
<td>**</td>
<td>**</td>
<td>50 psig (3.5 barg)</td>
<td>25 psig (1.7 barg)</td>
<td>19 psig (1.3 barg)</td>
<td>15 psig (1.1 barg)</td>
<td>10 psig (0.7 barg)</td>
<td>9 psig (0.6 barg)</td>
</tr>
</tbody>
</table>

** Validation

PPS cartridges are validated using test procedures that comply with the intent of both ASTM F 838-05 and HIMA protocols for the determination of bacterial retention in filters used for liquid filtration. The challenge level is 10^7 organisms per cm^2 of filter media:

- 0.10 µm challenged with *Acholeplasma laidlawii*
- 0.22 µm challenged with *Brevundimonas diminuta*
- 0.45 µm challenged with *Serratia marcescens*
- 0.65 µm challenged with *Saccharomyces cerevisiae*

Critical Process Filtration can provide validation assistance.

** Ordering Information

Capsule order number example: Pharmaceutical Grade Double Layered PES Membrane, 0.22 Micron Rating, Pre-Sterilized, 20” Length, Sanitary Inlet, Sanitary Outlet = CPPPS-20S0002FF.

** Extractables

Pharmaceutical grade filters typically exhibit low levels of non-volatile residues.

** Quality Assurance and Standards

Critical Process Filtration uses state of the art computer controlled equipment to consistently produce high quality products as well as significantly reduce hand operations that can compromise quality. All manufacturing and testing is continuously monitored in real time so that data can be quickly and easily analyzed to facilitate improvements in both quality and cost.

The Critical Process Filtration manufacturing and quality systems meet rigorous ISO 9001:2008 standards. Each operation, including assembly, testing, cleaning, drying and packaging, is done in an appropriately rated clean room. Manufacturing is controlled using a sophisticated manufacturing system that networks work stations, manufacturing centers and inspection points. During the manufacturing and inspection processes, data is collected in real time to allow continuous quality monitoring and full traceability of all materials and processes.

Each capsule filter assembly is integrity tested before release.

** USP Biosafety and FDA Compliance

The materials used to construct PPS capsule filters are non-toxic and meet the requirements for the MEM Elution Cytotoxicity Test and the requirements for Biological Reactivity Tests in the current version of the United States Pharmacopeia (USP) for Class VI - 121 °C Plastics. In addition, the materials meet the requirements listed by the FDA as appropriate for use in articles intended for repeated food contact as specified in Title 21 CFR sections 174.5, 177.1500, 177.1520, 177.1630, 177.2440, and 177.2600 as appropriate. PPS capsule filters comply with Title 21 CFR sections 210.3 (b)(6) and 211.72, for non-fiber releasing filters. The levels of bacterial endotoxins in aqueous extracts from pharmaceutical grade capsule filters are below current USP limits as specified for water for injection.

** Total Performance

Critical Process Filtration, Inc. is a vertically integrated manufacturer of filtration products to industries in which filtration is considered a critical part of the manufacturing process. We supply a complete line of products and services to help you cost effectively satisfy all your filtration requirements from a single source.

** Critical Process Filtration, Inc.

One Chestnut Street • Nashua, NH 03060
Tel: 603.880.4420 • Fax: 603.880.4536
criticalprocess.com • sales@criticalprocess.com

The information contained herein is subject to change without notice. The Critical Process Filtration logo is a trademark of Critical Process Filtration, Inc. Viton is a trademark of DuPont Performance Elastomers L.L.C. © 2011-2015 Critical Process Filtration, Inc. • All Rights Reserved • Data Sheet CPPPSDS1011 Rev.